Comparing Sample Size and Power Calculation Results for a Group Sequential Trial with a Survival Endpoint: rpact vs. gsDesign
Planning
Survival
This document provides an example that illustrates how to compare sample size and power calculation results of the two different R packages rpact and gsDesign.
Sequential analysis with a maximum of 3 looks (group sequential design), one-sided overall significance level 2.5%. The results were calculated for a two-sample logrank test, H0: hazard ratio = 1, power directed towards smaller values, H1: hazard ratio = 0.75, piecewise survival distribution, piecewise survival time = c(0, 6, 9, 15, 21), control lambda(2) = c(0.025, 0.04, 0.015, 0.01, 0.007), maximum number of subjects = 1405, maximum number of events = 386, accrual time = c(12, 13, 14, 15, 16, 40.556), accrual intensity = c(15, 21, 27, 33, 39, 45), dropout rate(1) = 0.2, dropout rate(2) = 0.2, dropout time = 12.
is not exactly equal to getPowerSurvival from above. This, however, has definitely no consequences in practice but explains the slight differences in rpact and gsDesign.
System: rpact 4.1.1, R version 4.4.2 (2024-10-31 ucrt), platform: x86_64-w64-mingw32
To cite R in publications use:
R Core Team (2024). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
To cite package ‘rpact’ in publications use:
Wassmer G, Pahlke F (2024). rpact: Confirmatory Adaptive Clinical Trial Design and Analysis. R package version 4.1.1, https://www.rpact.com, https://github.com/rpact-com/rpact, https://rpact-com.github.io/rpact/, https://www.rpact.org.